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Abstract 

In this paper, a general blind steganalysis system is 
proposed, in which the statistical moments of characteristic 
functions of the prediction-error image, the test image, and 
their wavelet subbands are selected as features. Artificial 
neural network is utilized as the classifier. The performance 
of the proposed steganalysis system is significantly superior 
to the prior arts.  
 
1. Introduction 

In recent years, digital watermarking has emerged as an 
increasingly active research area. Information can be hidden 
into images, videos, and audios imperceptibly to human 
beings. It provides vast opportunities for covert 
communications. Consequently, methods to detect covert 
communications are called for. This task is especially urgent 
for law enforcement to deter the distribution of children 
pornography images/videos hidden inside normal 
images/videos, and for intelligence agencies to intercept 
communications of enemies. Steganalysis is the art and 
science to detect whether a given medium has hidden message 
in it. On the other hand, steganalysis can serve as an effective 
way to judge the security performance of steganographic 
techniques. In other words, a good steganographic method 
should be imperceptible not only to human vision systems, 
but also to computer analysis. 

The huge diversity of natural images and the wide variation 
of data embedding algorithms make steganalysis a tough 
mission. However, an original cover medium and its stego-
version (with hidden message inside) always differ from each 
other in some aspects since the cover medium is modified 
during the data embedding. Some data hiding method 
introduces a certain pattern in the stego-images. For example, 
in [1], Fridrich et al. have discovered that the number of zeros 
in the block DCT domain of a stego-image will increase if the 
F5 embedding method is applied to generate the stego-image. 
This feature can be used to determine whether there exist 
hidden messages embedded with the F5 method. There are 
some other findings regarding the steganalysis of a particular 
data hiding method [2, 3]. However, this type of steganalysis 
cannot cope with the real world since the data embedding 
method is often unknown in advance. A method designed to 
blindly detect stego-images is referred to as a general 
steganalysis method. From this point of view, the general 
steganalysis methods have more real value for deterring covert 
communications.  

In [4], Farid proposed a general steganalysis method 
based on image high order statistics. These statistics are 
based on decomposition of images with separable quadrature 
mirror filters. The subbands’ high order statistics are obtained 
as features for steganalysis. It can differentiate stego-images 
from cover images with a certain success rate. In [5], a 
steganalysis method based on the mass center (the first order 
moment) of histogram characteristic function is proposed. 
The second and third order moments are also considered for 
steganalysis. Compared with [4], its performance has been 
improved. However, the performance achieved by [5] is still 
not high enough since it adopts very limited number of 
features extracted from the test image. This paper proposes to 
select statistical moments of characteristic functions of the 
prediction-error image, the test image, and their wavelet 
subbands as features. Artificial neural network is used as the 
classifier. The proposed steganalysis system outperforms the 
existing techniques, say, [4,5] significantly. 

The rest of this paper is organized as follows. Section 2 
discusses the proposed features. In Section 3, the used neural 
network classifier is presented. Experimental results are 
presented in Section 4. Conclusion is drawn in Section 5. 
 
2. Features for steganalysis 

Because the dimensionality of image data is normally huge, 
it is unrealistic to use the image data directly for steganalysis. 
A feasible approach is to extract a certain amount of data 
from the image and use them to represent the image itself for 
steganalysis. In other words, they are features characterizing 
the image. Different tasks decide the different relation of 
features with respect to image. In the area of facial recognition, 
the features should reflect the shape of target faces in an 
image, i.e. the main content of the image. Minor distortions 
should not affect the final decision. However, in steganalysis, 
the main content of an image is not an issue to be considered 
since human eyes cannot tell the difference between an 
original image and its stego-version. On the contrary, those 
minor distortions introduced during data hiding stand up as 
the first priority. Therefore, the features for steganalysis 
should reflect those minor distortions associated with data 
hiding. 
2.1. Moments of characteristic function 

It is well-known that an image’s histogram is essentially 
the probability mass function (pmf) of the image (only 
differing by a scalar). Multiplying each component of the pmf 
by a correspondingly shifted unit impulse results in the 
probability density function (pdf). Obviously, in the context 



  

of discrete Fourier transform (DFT), the unit impulses can be 
ignored, implying that we can treat pmf and pdf exchangeable. 
Thus, the pdf can be thought as the normalized version of a 
histogram. According to [6, pp. 145-148], one interpretation 
of characteristic function (CF) is that the CF is simply the 
Fourier transform of the pdf (with a reversal in the sign of the 
exponent).  

Owing to the decorrelation capability of discrete wavelet 
transform (DWT), the coefficients of different subbands at 
the same level are kind of independent to each other. 
Therefore, the features generated from different wavelet 
subbands at the same level are kind of independent to each 
other. This property is desirable for steganalysis.  

We propose to use the statistical moments of the CFs of 
both a test image and its wavelet subbands as features for 
steganalysis, which are defined as follows. 
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where H(fi) is the CF component at frequency fi, N is the total 
number of points in the horizontal axis of the histogram. Note 
that we have purposely excluded the zero frequency 
component of the CF, i.e., H(f0), from calculating the 
moments because it represents only the summation of all 
components in the discrete histogram. For an image, it is the 
total number of pixels. For a wavelet subband, it is the total 
number of the coefficients in the subband. In either case, it 
does not change during the data hiding process. As shown 
below, its exclusion can enhance moments’ sensitivity to data 
hiding.  
 
2.2. Why moments of characteristic functions? 

Denote histogram by h(x), which is the inverse Fourier 
transform (in the above-mentioned sense) of the CF, H(f).  
The following formula can be derived straightforwardly. 
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This is to say that the magnitude of the n-th derivative of the 
histogram at x=0 is upper bounded by the n-th moments of 
the CF multiplied by a scalar quantity (simply stated below as 
“upper bounded by the n-th moments of the CF”). Using 
Fourier translation property, it can be shown that this upper 
bound is also valid for 0x ≠ . 

Assume the noise introduced by data hiding is additive, 
Gaussian distributed, and is independent to the cover image, 
which is valid in general for most data hiding methods, 
including spread spectrum (SS), least significant bit-plane 
(LSB), and quantization index modulation (QIM). This 
assumption leads to that the magnitude of the DFT sequence 
of the noise caused by data hiding is non-increasing. 
Obviously, sequence of the magnitude of CF is non-negative. 
Using the discrete Chebyshev inequality [5,7], we can show 
that the moments defined in Equation (1) are non-increasing 
after data hiding.  

Combining the above two results, one can derive that the 
upper bound of the magnitude of the n-th derivative of the 
histogram will not increase after data hiding. This observation 
will be graphically illustrated in Section 2.4.  

 
2.3. Prediction-error image  

In steganalysis, we only care about the distortion caused 
by data hiding. It is known that this type of distortion may be 
rather weak and hence covered by other types of noises, 
including those due to the peculiar feature of the image itself. 
In order to enhance the noise introduced by data hiding, we 
propose to predict each pixel grayscale value in the original 
cover image by using its neighboring pixels’ grayscale values, 
and obtain a prediction-error image by subtracting the 
predicted image from the test image. It is expected that this 
prediction-error image removes various information other than 
that caused by data hiding, thus making the steganalysis more 
efficient because the hidden data are usually unrelated to the 
cover media. In other words, the prediction-error image is 
used to erase the image content. The prediction algorithm is 
expressed below [8]. 
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where a, b, c are is the context of the pixel x under 
consideration, x̂  is the prediction value of x.  The location of 
a, b, c can be illustrated in Fig. 1. 
 

x b 
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Fig. 1 Prediction context. 
 

2.4. Graphical illustration  
In this section, we use some graphs to illustrate the 

effectiveness of the selected features: moments of CFs. In Fig. 
2, an original color image from the CorelDraw image database 
[9] with serial no. 173037 is shown in the left. Its grayscale 
image obtained by using irreversible color transform is shown 
in the middle. The prediction-error image is shown in the right. 
The histograms of the four subbands at the 1st level Haar 
wavelet transform are shown in Fig. 3. The zoom in of Fig. 3 
is shown in Fig. 4. The CFs of these four subbands are 
shown in Fig. 5. Note that due to the space limit, these figures 
are displayed in small size. However, readers are strongly 
recommended to view the figures, from Fig. 3 to Fig. 8, 
clearly by using zoom to 500%. In these several figures, the 
“Orig.” means the graph is for original image, while the “cox” 
stands for stego-image produced by using Cox et al.’s SS 
method [10]. Two numbers are the 1st order moments of the 
corresponding CF’s from the original and stego-image, 
respectively. It is observed that the histograms become flatter 
after data hiding, and this is reflected by the reduced 1st order 
moments, respectively, thus illustrating the effectiveness of the 
proposed features. 

Similarly, Fig.’s 6, 7 and 8 provide illustration for 
prediction-error images. Similar observation can be obtained. 
It is noted that the LL1 subbands in Fig. 3 and Fig. 6 are 



  

rather different, demonstrating the effectiveness of using 
prediction-error image as analyzed in Section 2.3. This will be 
further verified by experimental works presented in Section 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
2.5. 78-D feature vector 

In our work, a test image will be decomposed using a 
three-level Haar transform. For each level, there are four 
subbands, resulting in 12 subbands in total. If the original 
image is considered as level-0 LL subband, we have a total of 
13 subbands. For each subband, the first three moments of 
characteristic functions are derived according to Equation (1), 
resulting in a set of 39 features. Similarly, for the prediction-
error image, another set of 39 features can be generated. Thus, 
a 78-D feature vector is produced for the test image. Our 
extensive experimental study has shown that using more than 
three-level wavelet decomposition and including more than the 
first three order moments do not further improve the 
steganalysis performance, while leading to higher 
computational complexity. Hence the 78-D feature vectors are 
used in our proposed steganalysis system. 

 
3. Neural network classifier 

The design of classifier is another key element in 
steganalysis. In our work, an artificial neural network (NN) 
[11], specifically, the feed forward NN with back-propagation 
training algorithm is used as the classifier. It is expected that 

the powerful learning capability possessed by the NN will 
outperform the linear classifiers. The number of hidden layers 
is four. All hidden neurons use the tan-sigmoid function. For 
the one-neuron output layer, all three activation functions 
(linear, log-sigmoid, tan-sigmoid) have been tested in the 
simulation. In the training stage, the outputs of log-sigmoid 
and tan-sigmoid neuron have larger mean square error (MSE) 
than the linear neuron output. In the testing stage, the linear 
neuron output provides higher classification rate than the non-
linear outputs. A heuristic explanation for this observation is 
given below. Because log-sigmoid function squeezes the 
output into the range from 0 to 1 and tan-sigmoid function 
squeezes the output into the range -1 to 1, more training 
exemplars or testing patterns may lie on the wrong side at the 
output. Therefore, a reasonable structure is composed of four 
tan-sigmoid neuron hidden layers and one linear neuron output 
layer. In the back-propagation training, the computation 
programming is based on the neural network toolbox of 
Matlab 6.5.   
 
4. Experimental results 

To evaluate the performance of the proposed steganalysis 
system, we use all the 1096 sample images included in the 
CorelDRAW Version 10.0 software CD#3 for experiments 
[9]. It contains pictures of Nature, Ocean, Food, Animals, 
Architecture, Places, Leisure and Misc.  The following five 
typical data hiding methods are used in experiments: Cox et 
al.’s non-blind SS [10] ( 1.0=α ), Piva et. al’s blind SS [12], 
Huang and Shi’s 8 by 8  block SS [13], a generic QIM [14] 
(0.1 bpp (bit per pixel)), and a generic LSB (0.3 bpp, both the 
pixel position used for embedding data and the to-be-
embedded bits are randomly selected). For each image in the 
CorelDRAW image database, five stego-images are generated 
with these five data hiding methods, respectively. For all the 
data hiding methods, different random signals are embedded 
into different images. The evaluation of the proposed 
steganalysis system is hence more general.  

At first, we evaluate the system with each one of the five 
data hiding methods at a time. Randomly selected 896 original 
images and the corresponding 896 stego-images are used for 
training. The remaining 200 pairs of the cover images and 
stego-images are put through the trained neural network to 
evaluate the performance. The detection rate is defined as the 
ratio of the number of the correctly classified images with 
respect to the number of the overall test images. The 10-time 
average detection rates are listed in Table 1.  

Next, we combine the five data hiding methods to evaluate 
the blind steganalysis ability of the proposed system. Similarly 
to the above, we start with 1096 6-tuple images. Each 6-tuple 
images consists of an original image, and the five stego-
images generated by the five data hiding methods. We then 
randomly selected 896 6-tuple images for training, and use the 
remaining 200 6-tuples for testing. Again, the 10-time average 
correct detection rates are listed in Table 1. We also evaluate 
the test results of Farid’s method [4] and Harmsen’s method 
[5] under the same circumstances. Note that the NN 
converges to MSE<0.05 with our proposed features in less 
than 1,500 iterations during the training, while the NN with 
either Farid’s or Harmson’s features does not converge even 

Fig. 2 CorelDraw image no.173037: Original color (left), 
Original grayscale (middle), prediction-error image (right). 

Fig. 3 Original grayscale         Fig.6 Prediction-error 

Fig.4  Zoom in of Fig. 3.         Fig.7  Zoom in of Fig. 6. 
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Fig. 5 CF of original grayscale   Fig.8 CF of prediction-error 



  

after 100,000 iterations. Therefore, the Bayes classifier [5] is 
used to obtain the detection rates for these two methods listed 
in Table 1. It can be observed that the proposed system 
outperforms both Farid’s and Harmsen’s methods at a 
significant advantage. 

 
Table 1 Testing results. 

Detection rate Farid [4] Harmsen [5] Proposed 
Cox et al.’s SS 64.9% 78.3% 98.1% 
Piva et. al’s SS 87.8% 79.4% 98.7% 
Huang and Shi’ block SS 76.1% 81.5% 98.8% 
Generic QIM (0.1 bpp)  99.7% 75.7% 99.0% 
Generic LSB (0.3 bpp) 71.9% 56.5% 98.9% 
5 methods combined 68.9% 72.8% 98.7% 
 

Thirdly, to further evaluate our system, a data hiding 
method, which has not been used in the training process, is 
tested. We apply Hide4PGP [15] to 200 randomly selected 
CorelDraw images. The detection rate is 99.5%. 

Fourthly, to evaluate the effectiveness of using the 
prediction-error image, we conduct the same evaluation as 
stated above to the first 39 features (generated from the test 
images) and the second 39 features (obtained from the 
prediction-error images), separately. Table 2 contains the 
comparison results, which has demonstrated the effectiveness 
of using the prediction-error images. That is, the performance 
of using features obtained from the prediction-error images is 
more effective than that obtained from the test images. This is 
expected as analyzed above.  

 
Table 2 Effectiveness comparison of features from original 

images and features from prediction-error images.  
Detection rate 39D 

(test mage) 
39D(prediction
-error image) 

Cox et al.’s SS 96.2% 96.6% 
Piva et. al’s SS 95.2% 98.8% 
Huang and Shi’s block SS 95.4% 97.9% 
Generic QIM (0.1 bpp) 97.9% 98.7% 
Generic LSB (0.3 bpp)  94.5% 98.7% 
5 methods combined 94.9% 98.4% 

 
Finally, the effectiveness of using the neural network is 

evaluated. We conduct experiments with our proposed 78-D 
feature vectors but using the Bayes classifier and the neural 
network, respectively, for the five data hiding methods 
individually and jointly. Table 3 contains detection rate for 
Cox et al.’s SS data hiding method and for the combined 
testing. Comparing with the results obtained with the Bayes 
classifier, a 3% to 4% increase in terms of detection rate has 
been achieved by using the proposed neural network. 

 
Table 3 Comparison of neural network with Bayes classifier. 

Detection rate Bayes classifier Neural network 
Cox et al.’s SS 95.2% 98.1% 
5 methods 
combined 

94.6% 98.7% 

 
5. Conclusion 

In this paper, a novel general steganalysis system is 
proposed. Our contributions are summarized below. 

a) Statistical moments of wavelet characteristic functions 
(CF’s) are proposed to be used for steganalysis for the first 
time. Our theoretical analysis and experimental work have 
pointed out that the moments of wavelet CF’s can reflect the 
differentiation property of the associated histograms, hence, 
reflecting sensitively the changes caused by data hiding. b) 
Excluding zero frequency component of CF’s from the 
calculation of moments has improved the effectiveness of 
moments in steganalysis. Our experimental works have shown 
more than three-percept increase in detection rate. c) 
Prediction-error images are able to enhance the changes 
caused by data hiding by reducing the effect caused by the 
diversity of natural images. d) Artificial neural network 
performs better in steganalysis than Bayes classifier due to its 
powerful learning capability. e) Our combined steganalysis 
approach has pointed out a promising way towards blind and 
practically powerful steganalysis. f) Our experiments are 
conducted over a large number of images, which is necessary 
for steganalysis. g) Our proposed steganalysis system has 
demonstrated a significant performance improvement over the 
prior-arts.  
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